

NanoTrader
Express

Language Reference

Document Version 2.1.4

www.fipertec.com

http://www.fipertec.com/

 NanoTrader-Express

 NanoTrader-Express 2

Contents

NanoTrader Express .. 1

1 Introduction ... 4

2 Express – Execute Only .. 4

3 Structure of an Express-Program .. 5

4 A Sentimentor Example .. 5

5 Adding an Express-Sentimentor to a Study .. 7

6 Working with the Express Editor ... 8

6.1.1 Keyboard Shortcuts .. 9

6.1.2 Verifying an Express Program .. 9

6.1.3 Understanding how Express Programs are Saved 9

7 Express Language Elements .. 10

7.1 Types ... 10

7.2 Reserved Words .. 11

7.3 Expressions ... 11

7.3.1 Numerical Expressions ... 11

7.3.2 Relational Expressions ... 11

7.3.3 Logical Expressions .. 12

7.3.4 String Expressions .. 12

7.4 Variable Declarations ... 12

7.5 Input Variables ... 13

7.6 Accessing Variables and Series data ... 13

7.7 Working with Arrays ... 14

7.8 Assignments .. 14

7.9 Assigning Sentiments .. 14

7.10 Predefined Series .. 15

7.11 Importing a Series from another Sentimentor 15

7.12 Importing Price Data from another Symbol .. 17

7.13 Date and Time constants ... 18

7.14 Statements ... 18

7.15 Control Structures .. 19

7.15.1 if then .. 19

7.15.2 If then else .. 19

7.15.3 While Loop .. 19

 NanoTrader-Express

 NanoTrader-Express 3

7.15.4 For Loop ... 20

7.16 The Need for Speed... 21

7.17 Interpretation – Computing the Sentiments 21

7.17.1 Interpretation Using the Built-in Schemes 22

7.17.2 Programming the Interpretation Explicitly 22

7.18 Plotting ... 23

8 A Blocker Example .. 24

9 A Stop Example .. 25

10 A Stop/Tactic Example with intraperiod updates 26

11 Encrypting Express-Sentimentors ... 28

12 Tipps for Debugging .. 29

13 Built-In Functions and Procedures .. 29

 NanoTrader-Express

 NanoTrader-Express 4

1 Introduction

NanoTrader-Express allows to program sentimentors that can be used in
exactly the same way as the built-in sentimentors, i.e., they can be combined
with other sentimentors and of course they can be optimized. Thus, the
NanoTrader framework in conjunction with the Express environment gives you
an unparalleled power for specifying, optimizing, backtesting, and applying your
trading ideas.

Note that it is not a prerequisite to have the NanoTrader-TradingSystem
permission to take advantage of Express. You might use Express to compute
and plot classical indicators as well as creating graphical annotations to the
chart or issuing messages and alarms.

The scope of this document is to provide a description of the language
NanoTrader-Express. It is not intended to give an introduction into the theory
and practice of programming or algorithms in general. A reader unfamiliar with
the concepts of programming may have a look at introductory books for, e.g.,
Visual Basic, Pascal, Excel programming, or EasyLanguage for TradeStation.
Once the main concepts like variables, loops, or conditional expressions are
understood, working with Express will be very easy.

Besides a working knowledge of programming languages it is assumed that the
reader is familiar with the terminology used in the “NanoTrader – Charting &
Trading” manual.

Users having experience with other programming languages for building
indicators of trading systems should be aware of the overall “Sentimentor”
approach used by NanoTrader as this carries over to sentimentors programmed
in Express, i.e., you will not find statements like “buy at open” – instead, an
Express based Sentimentor is a building block used generating sentiments that
eventually lead to trading actions through the combination with the
MetaSentimentor and the applied trading approach.

2 Express – Execute Only

Access to the programming environment of Express requires a specific
permission. However, NanoTrader allows users without the Express permission
to execute and view Express scripts, but they cannot change or create scripts
on their own.
In order to enable an Express script (or a study containing an Express script) to
be executed by an "ExecuteOnly" user that script needs to be opened once with
the Express editor by a user having the Express permission. When
closing/saving the editor NanoTrader silently adds a watermark to the script
which is required for being executable by "ExecuteOnly" users.

We encourage programmers to spread their Express creations among the
NanoTrader users.

 NanoTrader-Express

 NanoTrader-Express 5

3 Structure of an Express-Program

The way a Sentimentor is computed is as follows:

 Declare and initialize variables needed for the computation

 For each bar, carry out the required calculations.

 Compute the sentiments, i.e., how is the result of the calculation to be
interpreted

 Define one or more charts to be plotted

An Express program reflects this by enforcing the following structure:

Variable Declarations Section

Calculation Section

Interpretation Section

Plot Section

4 A Sentimentor Example

Let’s have a look at a simple Sentimentor that computes an exponential moving
average (EMA). Buy and Sell sentiments are generated if the EMA crosses the
close price. This Sentimentor is part of the NanoTrader distribution.
//(c) Fipertec

Express EMA

Vars

input $span (1, 200, 10);

numeric factor (0);

series ema;

Calculation

factor = 2 / ($span + 1);

if close[1] = void then //we need one lookback entry

 ema = close;

else

 ema = factor * close + (1 - factor) * ema[1];

interpretation TriggerLine(close, ema);

plot (ema, “blue”, 2);

plot (close, “black”, 1);

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

Explanation:

 NanoTrader-Express

 NanoTrader-Express 6

1. A double slash is used to start a comment reaching until the end of the
line. It is also possible to use curly braces { } for comments anywhere in
the code.

2. The program always starts with Express <name>, where name

becomes the name of the Sentimentor used in the DesignerBar.

3. With the keyword Vars the Variable Declarations Section is

started.

4. This line declares an integer variable that is subject to optimization. The
minimal value is 1, the maximal value is 200, and the initial value is 10.
The name of the variable, span, is displayed in the DesignerBar. By using

the $ character, it is immediately visible in the code where optimization
variables are used.

5. factor is defined as a numeric variable that may hold integer or float

values. By using (0) it is initialized to zero. However, as Express

guarantees to initialize numeric values to zero, the (0) could be omitted.

Express is not case sensitive, i.e. factor, Factor, FACTOR all refer to

the same variable. The same holds for keywords.

6. ema is defined as a series of float data. The series has the same

length as the analyzed MasterChart. The elements of the series are
automatically initialized to zero. By using the (val) mechanism, val

would be used as the initial value of all the elements of the series.

7. After the reserved word Calculation the statements for performing the

computations begin. Theses statements are executed for each bar in
turn, starting with the oldest or “left most”.

8. The factor for the EMA computation is determined, based on the input

variable $span. The usual operators (+, -, *, /) and parenthesis can be

used for mathematical operations.

9. Express defines a number of series implicitly, e.g., close, open,

high, low, volume, to access the data of the MasterChart

For computing the EMA value of the actual period the EMA value of the
previous period is also required. To access previous data of a series, an
indexing is used: close[1] denotes the close of 1 one period ago.

Generally, close[n] denotes the closing price of n periods ago, and

close is simply a synonym for close[0].

Assume we are calculating the EMA for the very first period then
close[1] will not be available. In this case, the value of close[1] will

be void, a reserved word that is used to identify non existing data.

The conditional statement if executes the then-part if the condition is

fulfilled. In case the then-part consists of more than one statement, the
then-part has to be started with begin and ended with end.

10. The first ema series element is assigned an initial value.

11. The ema for the current period is computed.

12. The conversion of the ema/close crossings into sentiments– called the
interpretation – can be carried out by the standard interpreter

 NanoTrader-Express

 NanoTrader-Express 7

TriggerLine. It would also be possible to compute the sentiments
explicitly by assigning sentiment values to the predefined series
sentiment.

13. The ema series is to be plotted in blue using a pen width of 2.

14. The close series is to be plotted in black using a pen width of 1.

5 Adding an Express-Sentimentor to a Study

To add an Express Sentimentor to a study, choose the desired Sentimentor
from the Express section of the Add Sentimentor dialog:

To edit the code of an Express Sentimentor double click the corresponding line
in the DesignerBar:

In case the Express Sentimentor applies a default interpretation scheme (see

below), the scheme can be configured by clicking the icon or by rightclicking
the Express Sentimentor in the DesignerBar and then choosing Edit interpretation
from the context menu:

 NanoTrader-Express

 NanoTrader-Express 8

This will bring up the associated sentiment editor:

6 Working with the Express Editor

Double clicking on an Express Sentimentor in the DesignerBar will open the
Express editor:

 NanoTrader-Express

 NanoTrader-Express 9

The editor displays the reserved words of Express in blue and comments in
green.

6.1.1 Keyboard Shortcuts

The default Windows shortcuts for cutting and pasting text can be applied, i.e.,
Ctrl-C to copy selected text, Ctrl-V to paste text, Ctrl-A to select the complete
text, and Ctrl-S to save the text.

The Express editor also provides unlimited undo/redo using the standard
Windows shortcuts Ctrl-Z for undo and Ctrl-Y for redo.

6.1.2 Verifying an Express Program

Clicking the Apply-button will execute the Express program and the results in
terms of calculated series, plots, and signals are immediately displayed in the
charts. In case the code contains errors, NanoTrader will display appropriate
error messages.

6.1.3 Understanding how Express Programs are Saved

When quitting the Express editor by clicking the OK-Button, the program is
associated with the Express Sentimentor that has been double clicked to start
the editor. Note that you need to save the study explicitly using from the chart
window otherwise the program might be lost.

However, the usual way is to save the Express program as a template before
quitting the Express editor. This will save the programs text in the directory

 NanoTrader-Express

 NanoTrader-Express 10

„Express“ below the installation directory of NanoTrader. This will also make the

program available as a Sentimentor in the Add Sentimentor-dialog and the Editor
window.

From within the Editor, you may load any template and adapt it to your specific
needs.

It is good style to use the name of the Express program when saving it as a
template. Suppose the program starts with
Express UltimateSenti

then UltimateSenti is the name of the Sentimentor. This name appears in

the DesignerBar and in the legend of its chart window. When saving the program
as a template, it is desirable to use UltimateSenti as the templates name,
although this is not enforced by the editor.

7 Express Language Elements

7.1 Types

Express is a so-called typed language, i.e. every entity representing a value is
of a certain type. This allows NanoTrader to catch a broad range of potential
programming errors immediately.

The following types are supported by Express:

 numeric

A numeric value can be a float (e.g. 3.75) or an integer (e.g. 10). If
needed, NanoTrader automatically converts floats into integer values by
stripping the fractional portion.

 series

A series is a series of elements of type numeric. Suppose the

analyzed MasterChart consists of 200 bars then a series will also
automatically consist of 200 elements. If the MasterChart is connected to
a realtime data feed, then a series will grow automatically.

 array

An array is a specified number of elements of type numeric. The size of

an array does not change automatically as a series does.

The entries of an array are initialized to 0.

 string

A string is a sequence of characters, like Hello World! When using

string constants in Express, the characters have to be enclosed in
quotation marks: “Hello World!”

 bool

A boolean entity can take the values true or false.

 time

Entities of type time are used to work with times and dates, e.g.,
if timeOpen < 10:00 then sentiment = 50;

if date = 2_8_2002 then sentiment = 100;

 NanoTrader-Express

 NanoTrader-Express 11

7.2 Reserved Words

Express uses a number of words that have a specific meaning. These words
cannot be used for naming variables.

Currently the reserved words are:
express, sentimentor, blocker, stop, vars,

calculation,interpretation, numeric, bool, senti_block,
senti_flat, senti_pass, series, string, if, then, else,
begin, end, for, to, downto, while, void, and, or, plot,

plotband, plotcrossinglines, plotline, plotcandles,

plotbars.

The following reserved words are for future use:

function, procedure, import, plothistogram

7.3 Expressions

An expression is a combination of operators and operands, like
5 + 3

where 5 and 3 are the operands and + is the operator.

Moreover, the value of a variable, a series, or the return value of a function are
also expressions.

Express distinguishes between three types of expressions: numerical, string,
and boolean.

7.3.1 Numerical Expressions

Numeric entities can be combined using the operators
+, -, *, / with their usual mathematical meaning, i.e.,

5 * close – 3*close[1];

Parenthesis can be used to group expressions as in

(high + low + close) / 3

7.3.2 Relational Expressions

A relational expression evaluates to true or false, as in
close > open.

The available relational operators are

Operator Meaning

> greater than

< less than

= equal to

 NanoTrader-Express

 NanoTrader-Express 12

>= greater equal than

<= less equal than

<> not equal to

Relational operations may be used with numeric, time, and string entities. In the
latter case the relational operation is evaluated with respect to the
lexicographical ordering, i.e. “abc” is less than “xyz”.

7.3.3 Logical Expressions

A logical expression is a combination of expressions evaluating to true or

false with the operators and and or, e.g.,

(close > open) and (volume <= 1000)

(close > close[1]) and ((open > close) or (volume > 1000))

Note: Always use parenthesis to indicate exactly the grouping of the
expressions. This enhances the readability of the code and avoids unnecessary
programming errors.

7.3.4 String Expressions

The only operator for two entities of type string is + that is used for

concatenating the strings, e.g.,

“Hello “+ “World!”

results in the new string “Hello World!”.

7.4 Variable Declarations

All variables used by an Express program have to be declared in the Variable

Declarations Section by stating the type and the name of the variable.

The name must begin with a character, e.g.,
numeric weight;

The initial value of a variable may be given in its declaration:

numeric weight(0.5);

To specify some variables of the same type the following notation can be used:

numeric weight, factor, delta;

Valid variable types are numeric, bool, series, and string. In case the

initial values are not specified in the declaration, Express uses the following
values:

Type Initialized to

numeric 0

bool false

series all elements set to 0

 NanoTrader-Express

 NanoTrader-Express 13

array all elements set to 0

string “”, i.e., the empty string

A series variable can be bound to a series of another Express sentimentor

or to a series of a built-in sentimentor that is part of the study. See Section

Importing a series from another sentimentor for details.

7.5 Input Variables

Input variables are numeric variables that are exposed to the outer world. They
appear as parameters in the DesignerBar and can be altered by the end user, just
as any parameter of the built-in sentimentors. Moreover, the input variables are
subject to optimization, so they need a minimal, a maximal, and an initial value.
The declaration of an input variable is as follows:

input $<var name> (<min value>, <max value>, <initial value>);

Example:

input $span (1, 200, 20);

The $ sign is used as prefix to indicate anywhere in the code that the

referenced value is an input variable that is subject to optimization and hence is
of great importance for the overall computation.

Very often, the input variables will only take integer values. However,
sometimes you may need float values as input variables. For defining input
variables of type float two more specifications are required: the precision and
the step size. The latter is used by the optimization as the minimal change of
the variables value. The declaration of an input variable holding float values is:

input $<var name> (<min value>, <max value>, <initial value>, <step

size>, <precision>,);

Example:

input $factor (1.00, 3.00, 2.00, 0.01, 2);

7.6 Accessing Variables and Series data

The value of a variable is accessed by simply using the variables name, as in
factor * delta

where factor and delta are declared as numeric variables.

An element of a variable of type series is always referenced relative to the

currently processed bar. The syntax is as follows:

<series name>[n]

where n denotes a positive integer or an expression.
Example:

close[1] or close[span], where span is a numeric variable.

 NanoTrader-Express

 NanoTrader-Express 14

The example references the close price of the previous bar (1 bar ago).

To access the current bar, it is possible to use the abbreviation close instead

of close[0].

7.7 Working with Arrays

An array has a fixed number of entries of type numeric.

An array can be defined in the Variable Declarations Section as

follows:

Array a[100];

This defines an array containing 100 numeric entries.

There is a major difference in accessing array entries as opposed to series

entries, although the syntax is the same:

<array name>[n]

Eg. a[0] refers to the first entry of the array.

Note that the indexing starts with 0, i.e., valid indizes for the array a[100] are 0

to 99.

Also note the difference to working with series in that the index always

represents an absolute index inside the array, not a relative offset with respect

to the current bar index.

An array might be resized using the function SetArraySize(), e.g.
SetArraySize(a, 250);

All entries of an array might be set to a specific value using the function
SetArrayTo(), e.g.,
SetArrayTo(a, 500);

7.8 Assignments

A declared variable can be assigned a value using the = operator:

span = high – low;

When assigning a value to a variable of type series, Express automatically

uses the element currently processed in the calculation section: Suppose
median is a variable of type series and Express performs the calculation for

the 25
th

 bar of the MasterChart, then
median = (high + low + close) / 3;

assigns the result of the expression to the 25
th

 element of the median series.

7.9 Assigning Sentiments

The sentiments of a Sentimentor programmed in Express have to be stored in
the predefined series sentiment. As a sentiment has to be a value between 0

and 100, Express automatically enforces this, i.e., if a value greater than 100 is
assigned, Express uses 100 instead, and in case a negative value is assigned,
Express uses 0.

 NanoTrader-Express

 NanoTrader-Express 15

When computing sentiments, it is sometimes very convenient to assign a
sentiment not only for the current period but also for the next 3, say, periods.
This can be achieved using the following notation:

sentiment = [100; 90; 80;];

Note that this so-called list assignment is only valid for the predefined series
sentiment.

7.10 Predefined Series

The following series referring to the MasterChart are always available:

open, close, high, low, volume. You may also use the abbreviations

o, c, h, l, v.

The following series of type time are also available:

Series Meaning

date the date of the end of the period

dateOpen the date of the beginning of the period

time the time of the end of the period

timeOpen the time of the beginning of the period

dateTime the date and time of the end of the period

dateTimeOpen the date and time of the beginning of the
period

Finally, the series sentiment has to be used for storing the computed

sentiments unless one of the default interpretation schemes is used.

With the exception of the sentiment series, all predefined series are read only,
i.e., it is not possible to assign a value to them.

7.11 Importing a Series from another Sentimentor

A series variable can be bound to a series of another Express sentimentor

or to a series of a built-in sentimentor that is part of the study by using the

following syntax:

series myseries (sentimentorName.seriesName);

The variable myseries will be a read-only reference to seriesName of the

sentimentor named sentimentorName.

This scheme is extremely helpful when using the computational result from a
sentimentor creating signals in another sentimentor that is used as a stop.

The following example demonstrates this.

Express EMA_Mid

Vars

series emaHigh, emaLow, emaMid;

input $span (0, 200, 10);

 NanoTrader-Express

 NanoTrader-Express 16

Calculation

if IsFirstBar() then

begin

 ExpMovingAverage(high, emaHigh, $span);

 ExpMovingAverage(low, emaLow, $span);

end

emaMid = (emaHigh + emaLow) / 2;

interpretation TriggerLine(close, emaMid);

plot (emaMid, "blue", 2);

The EMA_Mid sentimentor creates signals based on a trigger price calculated
from the EMAs oft the period highs and lows.

Now assume a stop sentimentor should rely on exactly that trigger series.
Instead of replicating the code and forcing the input parameters to be the same
the stop could simply import the trigger series names emaMid.

An example would be as follows:

Express Stop EMA_MidStop

vars

input $ofs (-25, 25, 10);

series anchor (EMAMidExpress.emaMid);

//The stop trails along the imported series with $ofs

//ticks.

numeric last;

calculation

if MarketPosition() = 1 then

begin

 if IsIntradayEntry() then

 last = -999999;

 last = max (last, anchor - $ofs * TickSize());

 SetStopPrice(last);

end

else

begin

 if IsIntradayEntry() then

 last = 999999;

 last = min (last, anchor + $ofs * TickSize());

 SetStopPrice (last);

end

Naming Convention

The imported sentimentor has to be written as it is shown in the DesignerBar
with dropping all non-alphabetical characters including spaces.

 NanoTrader-Express

 NanoTrader-Express 17

Therefore „EMA_Mid – Express“ as
shown to the right will become
EMAMidExpress.

The name is not case sensitive, hence

EmamidExpress would also be

feasible.

If the study contained multiple „EMA_Mid – Express“ sentimentors then they
have to be indexed:

series anchor (EMAMidExpress2.emaMid);

Import from a Built-in Sentimentor

It is also possible to import a series from a built-in sentimentor, e.g.:

series myBollinger (BollingerBands.upperBand);

The series that can be imported are listed in the Sentimentor Visualization dialog.
For Bollinger Bands this dialog looks as follows:

Calling Sequence

If sentimentor A imports a series from sentimentor B then A must be
recalculated whenever the settings for B are changed. NanoTrader ensures the
correct call sequence automatically. Moreover, there is no limit of the number of
imports a sentimentor can have. Imports can be nested in any depths, e.g., A
might import from B which imports from C and so forth.

7.12 Importing Price Data from another Symbol

As a special case of the above discussed importing of series from another
sentimentor the price data of a symbol used by the Study sentimentor can be
accessed. Recall that one usage of the Study sentimentor is to just display the
price data of the accessed symbol.

Assume a Study sentimentor accesses the DAX future:

 NanoTrader-Express

 NanoTrader-Express 18

An Express sentimentor could access the price data as follows:

series dax (StudyDaxMar.close); //or .open, .high, .low

As Future contracts often carry their expiry date at the end of their name, hence
forcing to adapt the code whenever the contract rolls over, it is possible to
provide only the beginning sequence of symbol name, e.g.:

series dax (StudyDax.close);

7.13 Date and Time constants

Time constants may be used in boolean expressions. A time has the format
HH:MM or HH:MM:SS

Example:
14:15 14:50:40

If the seconds are omitted they are automatically set to 0.

The format of a date is:
DD_MM_YYYY
Example:
22_10_2002

Time and date constants can be used in boolean expressions, as in
if time < 10:00 then

 sentiment = 50; //don’t buy during the first hour of the session

7.14 Statements

A statement is a complete Express instruction composed out of reserved words,
operators, operands and ended by a semicolon. E.g.

delta = high – low;

 NanoTrader-Express

 NanoTrader-Express 19

7.15 Control Structures

7.15.1 if then

The if control structure is used to execute statements only if a specified
condition is met. The syntax is:

if <boolean expression> then

 <statement>;

If several statements are to be executed the following syntax has to be used:

if <boolean expression> then
begin

 <statement>;

 <statement>;
 ...

 <statement>;
end

Example:
if close > open then

 upMoves = upMoves + 1;

7.15.2 If then else

The if control structure may also contain statements to be executed in case the
condition is not met:
if <boolean expression> then

 <statement>;

else

 <statement>;

Again, use begin and end to group a number of statements to be executed.

Example:

if close > open then

 upMoves = upMoves + 1;

else

begin

 downMoves = downMoves + 1;

 downVol = downVol + volume;

end;

7.15.3 While Loop

The syntax of the While loop is as follows:
while <boolean expression>

begin

 <statement>;

 <statement>;

...

 <statement>;

 NanoTrader-Express

 NanoTrader-Express 20

end

The statements are executed until the <boolean expression> evaluates to true.

Example:
lastHigh = 1;

vol = 0;

while (close[lastHigh] <> void) and (close > close[lastHigh])

begin

 vol = vol + volume[lastHigh];

 lastHigh = lastHigh + 1;

end

Note: Double check that the <boolean expression> will finally evaluate to

false, otherwise the while loop would run endlessly and the system will be

blocked. There is no way for NanoTrader to verify the finiteness of a <boolean

expression>. Therefore, if a While loop does not terminate within five seconds,

the Express program is terminated by NanoTrader.

7.15.4 For Loop

The syntax of a For loop is as follows:

for <variable> = <start value> to <numerical expression>
begin

 <statement>;

 <statement>;
...

 <statement>;
end

At the beginning of the For loop, <variable> is set to the <start value>. If

<variable> does not exceed < numerical expression> then the statements are

executed and <variable> is increased by one. This process repeats until

<variable> finally exceeds <numerical expression>.

Example:
upMoves = 0;

for i = 0 to 9

begin

 if close[i] > open[i] then

 upMoves = upMoves + 1;

end

Sometimes it is desirable to decrease the <variable> and to stop the loop if the

<variable> falls below <numerical expression>. This can be achieved by using

the following variant of the For loop:
for <variable> = <start value> downto <numerical expression>
begin

 <statement>;

 <statement>;
...

 <statement>;

 NanoTrader-Express

 NanoTrader-Express 21

end

Note: Double check that the <variable> will finally exceed<numerical

expression> (or falls below it in case of the downto variant).

There is no way for NanoTrader to verify the finiteness of a For loop. Therefore,
if a For loop does not terminate within five seconds, the Express program is
terminated by NanoTrader.

7.16 The Need for Speed

Whenever While or For loops are used, make sure that the computation you

are carrying out is efficient. It is very easy to implement a calculation in a naive
way that works, but that requires an enormous amount of computation time.

Take for example the calculation of a 50-bar moving average. The naive
approach would sum up the close price of the current and the previous 49 bars
and then divide the result by 50. A more intelligent approach would take
advantage of the fact that whenever moving to the next bar, the new sum could
be computed by subtracting the “leftmost” price and adding the price of the
current bar.
Hence, the naive approach is 50 times slower (in words: fifty) than the more
intelligent approach. For a 200-bar moving average it would be 200 times
slower. Now suppose what happens if you use the “naive” implementation
within an optimization...

Quite often some calculations can be performed after all bars have been
processed, e.g., you want to apply a moving average on a complete series you
have computed. This can be achieved easily by using the boolean built-in
function IsFinalBar():
...

series result;

input $span (1, 200, 10);

Calculation:

..result = ...;

 if IsFinalBar() then //true, if currently the final bar is processed

 MovingAverage (result, result, $span); //built-in function

Whenever you assume that your Express script requires a lot of computation
time, make sure to call CalculateAtEveryTick(false); at the beginning of the
script. This ensures that the script is only executed at the end of a period and
not with each incoming tick. Obviously this will tremendously decrease the
overall workload.

7.17 Interpretation – Computing the Sentiments

The main aspect of a Sentimentor is obviously the computation of a sentiment
for each period. This is done in the Interpretation Section of an Express

program. The Interpretation Section starts is introduced with the

reserved word Interpretation.

 NanoTrader-Express

 NanoTrader-Express 22

7.17.1 Interpretation Using the Built-in Schemes

Very often the computation of the sentiments can be performed by one of the
built-in interpretation schemes that are also used by the built-in sentimentors.
Moreover, when using a built-in scheme, the corresponding editor for
configuring the scheme details is available. So relying on a built-in scheme
greatly simplifies the programming of an Express Sentimentor.

A built-in scheme can be called like a normal function.

Example:

interpretation TwoThresholds (mySeries, $upZone, $downZone);

or
interpretation TriggerLine (close, mySeries);

The TriggerLine scheme would compute the sentiments based on the close

series crossing the series mySeries.

In case a built-in scheme requires input variables they have to be provided as
parameters.

The following built-in schemes are available:

Built-in scheme Typical usage

TwoThresholds (series curve,

input upThreshold, input

downThreshold)

RSI

TriggerLine (series curve,

series trigger)
Crossing MA

Swing (series curve, input

spanLeft, input spanRight)
Momentum

Bands (series curve, series

lower, series upper)
Bollinger Bands

When using a built-in scheme, the plot statements may be omitted – Express
will automatically plot the series used in the built-in scheme. However, if at least
one plot statement is given, this standard mechanism is not applied.

7.17.2 Programming the Interpretation Explicitly

In case no built-in scheme matches the intended interpretation the sentiments
can be computed explicitly using the syntax:
interpretation

begin

 <statement>

…

 <statement>

end

Note the begin and end surrounding the statements for computing the

sentiments.

 NanoTrader-Express

 NanoTrader-Express 23

The process for computing the sentiments equals the process in the calculation
section, i.e., the statements are executed for each bar, starting with the oldest
(„left most“) bar.

The sentiments have to be assigned to the predefined series sentiment.

NanoTrader initializes the elements of the sentiment series with 50, i.e., neutral.

Example
interpretation

begin

 if CrossesAbove (close, mySeries) then

 sentiment = 100;

end

Instead of assigning the sentiment for the current bar only, it is also possible to
assign sentiments for the following bars. With this technique, an event can be
of significance not only in the period where it happens but also in the following
periods.

Example:
interpretation

begin

 if CrossesAbove (close, mySeries) then

 sentiment = [100; 90; 80;];

 else if close > mySeries then //staying above mySeries

 if sentiment = 50 then //do not overwrite crossing event

 sentiment = 65;

end

The so-called list assignment
sentiment = [value; value;...;];

is only valid for the series sentiment.

7.18 Plotting

The final statements of an Express program are one or more plot statements

following the syntax:

plot (<series name>, <colorname>, <pen width>);

or

plotline (<constant or variable>, <colorname>, <pen width>);

Example:

plot (mySeries, “blue”, 2);

plotline ($threshold, “green” 1);

The following colors are predefined:
red, lightRed, green, lightGreen, blue, lightBlue, magenta,

lightMagenta, yellow, lightYellow, cyan, lightCyan, grey,

black, white.

 NanoTrader-Express

 NanoTrader-Express 24

The colors are not case sensitive. In case of a typo, i.e., an undefined colour,
blue is chosen.

A color can also be defined as a so-called RGB-value (RGB= Red-Green-Blue)
using the syntax:

plot (<series name>, <red>, <green>, <blue>, <pen width>);

The red/green/blue values are integers in the range of 0 to 255 defining the
strength of the respective color.

Sometimes it is interesting to plot candles or bars based on real or modified
price data. This can be achieved by the following plot routines:

plotcandles (<open series>, <close series>, <high series>, <low

series>);

or

plotbars (<open series>, <close series>, <high series>, <low series>);

To fill the area between two series use plotband (e.g. for sentimentors like

Bollinger Bands):

plotband (<upper series name>, <colorname>, <pen width>,

<lower series name>, <colorname>, <pen width>,

<fillcolor>);

If two series that are crossing each other are to be plotted and the enclosed
areas should be filled in dedicated colors use plotcrossinglines (e.g. for

sentimentors like Crossing Moving Averages):

plotcrossinglines (<series1 name>, <colorname>, <pen width>,

<series2 name>, <colorname>, <pen width>,

<fillcolor series1 above series2>,

<fillcolor series1 below series2>);

8 A Blocker Example

In addition to the sentiment values in the range from 0 to 100, NanoTrader
supports two specific sentiment states that are used in conjunction with filters:

 BLOCK
Long and Short signals are rejected

 FLAT
Long and Short signals are rejected. In addition, a possible open position
is closed.

When working with Manual Sentimentors NanoTrader allows the usage of
these states, e.g, to prohibit the trading at a certain daytime.

 NanoTrader-Express

 NanoTrader-Express 25

The programming of such a Blocker using Express is shown in the following
example:
Express Blocker VolCheck

Vars

series twoPeriodVol;

Calculation

if CurrentBarIndex () > 1 then

 twoPeriodVol = vol[1] + vol;

interpretation

begin

 if twoPeriodVol < 10000 then

 sentiment = senti_block;

 else if twoPeriodVol > 5000000 then

 sentiment = senti_flat; //just for illustration

 else

 sentiment = senti_pass;

end

plot (twoPeriodVol, blue, 2);

1.

2.

3.

4.

Explanation:

1. The keyword Blocker declares this sentimentor to work as a Blocker.

This enables the usage of the sentiment constants senti_block,

senti_flat and senti_pass. Moreover, this keyword ensures that

the sentimentor can only be added as a Filter into a study.

2. The constant senti_block makes sure that Long and Short signals are

rejected (blocked).

3. The constant senti_flat makes sure that Long and Short signals are

rejected and a possible open position will be closed.

4. The constant senti_pass does not filter any signal.

9 A Stop Example

The implementation of a pricebased stop, i.e. a sentimentor that computes a
stop price, is demonstrated with the following example:
Express Stop Simple

vars

input $increase (1, 25, 10);

series ma;

calculation

 if IsFirstBar () then

 MovingAverage (close, ma, 10);

 if MarketPosition() = 1 then //long

 begin

1.

2.

 NanoTrader-Express

 NanoTrader-Express 26

 if IsIntradayEntry() then //we just opened the position

 SetStopPrice (EntryPrice() - 15);

 else

 SetStopPrice (ma - 100 + $increase* BarsSinceEntry());

 end

 else if MarketPosition() = -1 then //short

 begin

 if IsIntradayEntry() then //we just opened the position

 SetStopPrice (EntryPrice() + 15);

 else

 SetStopPrice (ma + 100 - $increase* BarsSinceEntry());

 end

3.

4.

5.

Explanation:

1. The keyword Stop declares this sentimentor to work as a price based

stop. This enables the usage of functions only available for this kind of
sentimentors. Moreover, this keyword ensures that the sentimentor can
only be added as a Stop into a study.

2. The function MarketPosition()informs about the current position:

1 = long
0 = flat
-1 = short

3. The boolean funtion IsIntradayEntry() returns true in case the

position has just been opened in the current, not yet closed period.
Sometimes it is necessary to use a different scheme for calculating the
stop price for the initial period, e.g., based only on the entry price. In
case the position is not closed within this initial period, the stop price for
the next period to come will be calculated again.

4. The function SetStopPrice() makes the computed stop price

available to NanoTrader that will choose the tightest stop among all used
stops in the current study.

5. For Stop sentimentors there is no Interpretation Section and no
Plot Section

10 A Stop/Tactic Example with intraperiod updates

At activation time/fill time the stop is placed $initialRisk ticks below the entry
price. When the traded price reaches the entry price + $profitTrigger ticks the
stop is adjusted to entryPrice + $initialProfitOffset. From that moment on it
starts trailing with a distance of $trail ticks. If the $trail parameter is set to 0, not
trailing occurs.
Express Stop BETrailStop

vars

input $initialRisk(0, 50, 10);

 NanoTrader-Express

 NanoTrader-Express 27

input $profitTrigger(0, 5, 3);

input $initialProfitOffset(0, 5, 2);

input $trail(0, 10, 5);

numeric entryPrice, tickSize;

numeric extreme;

numeric breakEven, trailStop;

calculation

if IsFirstBar() then

begin

 SetIntraPeriodUpdate();

 entryPrice = EntryPriceOriginal();

 tickSize = TickSize();

end

if MarketPosition() = 1 then //Long position

begin

 if IsIntradayEntry() then

 extreme = MaxPriceEntryBar();

 else if (BarsSinceEntry() = 0) then//We entered via a study

 //at the end of the period

 extreme = close;

 else

 extreme = max (extreme, Highest(high, BarsSinceEntry()));

 breakEven = entryPrice + $profitTrigger * tickSize;

 if $trail = 0 then //trail deactivated?

 trailStop = -9999;

 else

 trailStop = extreme - $trail * tickSize;

 if extreme >= breakEven then

 SetStopPrice (max(entryPrice + $initialProfitOffset *

 tickSize, trailStop));

 else

 SetStopPrice(entryPrice - $initialRisk * tickSize);

end

else if MarketPosition() = -1 then //Short position

begin

 if IsIntradayEntry() then

 extreme = MinPriceEntryBar();

 else if (BarsSinceEntry() = 0) then

 extreme = close;

 else

 extreme = min (extreme, Lowest (low, BarsSinceEntry()));

 breakEven = entryPrice - $profitTrigger * tickSize;

 if $trail = 0 then

 trailStop = 999999;

 else

 trailStop = extreme + $trail * tickSize;

 if extreme <= breakEven then

 SetStopPrice (min(entryPrice - $initialProfitOffset *

1.

2.

3.

 NanoTrader-Express

 NanoTrader-Express 28

 tickSize, trailStop));

 else

 SetStopPrice(entryPrice + $initialRisk * tickSize);

end

Explanation:

1. The existence of this routine in the source code activates the intraperiod
updates.

2. The opening price of the position as booked in the account.

3. The highest price achieved in the opening period after opening the
position. Expample: 60-minutes periods. Position entry after 30 minutes
=> the return value is the high of the remaining 30 minutes.

11 Encrypting Express-Sentimentors

Express sentimentors can be encrypted. This allows a broad range of
commercial third party applications. An encrypted Express sentimentor can be
used exactly as the provided built-in sentimentors. However, the Express code
itself cannot be edited or seen by the user.

To encrypt an Express sentimentors, chose from the main menubar
Extras|Encrypt Express Sentimentors.

This will bring up a file selection dialog which allows you to select all the Expess
sentimentors to be encrypted. After finishing the selection the following dialog is
shown:

This dialog allows to define the password. Moreover, an optional expiration date
can be defined, i.e., you might enforce a user to renew his subscription to you
Express sentimentor after a given date.
Also, the Express sentimentor can be licensed to a special user name.

 NanoTrader-Express

 NanoTrader-Express 29

In contrast to a normal Express sentimentor an encrypted Express sentimentor
is referred to by the study, i.e., the study refers to the encrypted file that needs
to be located in the Express subdirectory of the installation directory. Hence,
when distributing a complete study that contains an encrypted Express
sentimentor, the encrypted Express file has also to be delivered.

12 Tipps for Debugging

The Express environment is primary designed for small developments and thus
does not contain a dedicated debugger. However, there are various techniques
to help the debugging process:

 plot a series that holds intermediate values

 use Highlight() to plot values and debugging notes directly into the chart

 use ShowTip() to assign values and notes to individual bars

Often specific data constellations need to be tested. To achieve this it is very
comfortable to create the data via Excel yourself. To do so activate DDE in
Extras|Datasources. In the installation directory of NanoTrader you will find the
file Realtime_test.xls. Open this file and add the sentimentor which is to be
debugged to a study that is based on Excel. (Depending on you Excel version
you might need to use a symbol available in the “Excel-English” folder.)

13 Built-In Functions and Procedures

Express provides a number of built-in functions that can be called from within
an Express program. If a built-in function requires parameters, NanoTrader

 NanoTrader-Express

 NanoTrader-Express 30

checks if the provided parameters match the function definition. A function
definition declares how a function is to be called.

The function definition of the Max()-function is given as:

float Max (float value1, float value2)

Hence, the return value of the function Max is of type float. The functions

takes two parameters, both of type float. Recall that Express automatically

converts integer values to float values if needed, so

Max (close, 5000)

is a valid call, as 5000 would automatically be converted into a float value.

Functions returning a value can be used in expressions, as in
mySeries = Max (open, close) * 2;

Functions that do not return a value are also called procedures. A procedure
call cannot be used in an expression. Instead, it forms a complete statement:

MovingAverage (mySeries, mySeries, $span);

The definition of MovingAverage is

void MovingAverage (series source, series target, int span)

The return value void indicates that there is in fact no return value.

The names of the parameters in the definitions are chosen such that they
indicate their role for the function – they have no other specific meaning.

Even if a function does not receive parameters, the parenthesis have to be
used:

index = CurrentBarIndex();

The following built-in functions are available:

Definition: float AbsValue (float value)

Meaning: Returns the absolute value of `value’.

Example: AbsValue (-3.7) returns 3.7; AbsValue (5) returns 5

Definition: float ArcTangent (float value)

Meaning: Returns the arcus tangent of `value’.

Example: ArcTangent (2.7475) returns 70.

Definition: float Atr (int span)

Meaning: Returns the Average True Range of the MasterChart for the actual
and previous `span’ bars expressed in percent.

Definition: float AtrAbs (int span)

 NanoTrader-Express

 NanoTrader-Express 31

Meaning: Returns the Average True Range of the MasterChart for the actual
and previous `span’ bars expressed in points.

Definition: void Bands (series series, series lower, series upper)

Meaning: Standard interpretation scheme where the sentiments are computed
based on an upper and lower series

Example: interpretation Bands (close, myLower, myUpper);

Definition: int BarsSinceEntry ()

This function is only available for Stop sentimentors.

Meaning: Since how many periods is the current trade open?

Beispiel: if (MarketPosition() = 1) and (BarsSinceEntry() > 10) then ...

Definition: void CalculateAtEveryTick (bool value)

Meaning: Call CalculateAtEveryTick(false) to disable the execution of an
Express script for each incoming tick. The script will then be executed only at
the end of a period. This helps tremendously to speed up very time consuming
or poorly programmed Express sentimentors.

Example: if IsFirstBar() then CalculateAtEveryTick(false);

Definition: float Ceiling (float value)

Meaning: Returns the smallest integer greater than `value’.

Example: Ceiling (2.95) returns 3

Definition: float Cosine (float value)

Meaning: Returns the cosine of `value’ degrees.

Example: Cosine (45) returns 0.7071

Definition: bool CrossesAbove (series curve, series trigger)

Meaning: Returns true (if curve[1] <= trigger [1]) and (curve > trigger), false
otherwise

Example: if CrossesAbove (mySeries, close) then sentiment = 100;

Definition: bool CrossesAboveThreshold (series curve, float threshold)

Meaning: Returns true (if curve[1] <= threshold) and (curve > threshold), false
otherwise

Example: if CrosseAboveThreshold (mySeries, 70) then sentiment = 100;

 NanoTrader-Express

 NanoTrader-Express 32

Definition: bool CrossesBelow (series curve, series trigger)

Meaning: Returns true (if curve[1] >= trigger[1]) and (curve < trigger), false
otherwise

Example: if CrossesBelow (mySeries, close) then sentiment = 0;

Definition: bool CrossesBelowThreshold (series curve, float threshold)

Meaning: Returns true (if curve[1] >= threshold]) and (curve < trigger), false
otherwise

Example: if CrossesBelowThreshold (mySeries, 30) then sentiment = 0;

Definition: int CurrentBarIndex ()

Meaning: The index of the currently processed bar. The first bar has the index
0.

Example: highDiff = CurrentBarIndex() – IndexOfHighest (close, 10);

Definition: int Duration (time start, time end)

Meaning: The duration in seconds from start to end.

Example: d = Duration (timeOpen, time);

 d = Duration (dateTime[20], dateTime);

Note: The caller needs to make sure that both parameters are of identical type,
i.e., Duration (dateOpen, time) will give an invalid result as “dateOpen” only
contains the day-component whereas “time” only the time component.

Definition: int DayOfWeek (time time)

Meaning: The index of the day in the week from `time’, where Monday = 1,
Tuesday = 2, ...

Example: if DayOfWeek(date) = 5 then sentiment = 50;//no entries on Fridays

Definition: float EntryPrice ()

This function is only available for Stop sentimentors.

Meaning: The entry price for the current position. If the Stop is used in a
TradeGuard or as a Tactic then the return value is the price that was traded at
activation time of the TradeGuard or Tactic. If the TradeGuard was already
active while the position was opened then the price equals the fill price.

See also EntryPriceOriginal().

Example: SetStopPrice(EntryPrice() – 5 * TickSize());

 NanoTrader-Express

 NanoTrader-Express 33

Definition: float EntryPriceOriginal ()

This function is only available for Stop sentimentors.

Meaning: The actual opening price of the account position.

See also EntryPrice ().

Example: SetStopPrice(EntryPriceOriginal() + TickSize());

Definition: float Exp (float value)

Meaning: The exp() function applied on `value’.

Example: val = exp(1.254);

Definition: int FinalBarIndex ()

Meaning: Returns the index of the final period in the evaluation range.

Example:
if IsFirstBar() then
begin
 ExpMovingAverage(close, ema1, 5);
 ExpMovingAverage(close, ema2, 33);

 for i = 0 to FinalBarIndex()
 helper[-i] = ema1[-i] – ema2[-i];
end

Definition: ExpMovingAverage (series source, series target, int span)

Meaning: Computes the $span-bar exponential moving vverage of `source’ and
writes the result into `target’. This function should only be used in conjunction
with IsFirstBar() or IsFinalBar().

Example:
if IsFirstBar () then ExpMovingAverage (close, mySeries, $span);

if IsFinalBar () then ExpMovingAverage (mySeries, mySeries, $span);

Definition: float Floor (float value)

Meaning: Returns the largest integer smaller than `value’.

Example: Floor (2.95) returns 2

Definition: int GetArraySize (array arr)

Meaning: Returns the number of elements of array `arr’.

Example:
sum = 0;

 NanoTrader-Express

 NanoTrader-Express 34

for i = 0 to GetArraySize(arr) – 1
begin
 sum = sum + arr[i];
end

Definition: string GetPriceFormat ()

Meaning: Returns the internal fomat for plotting the price in the MasterChart’s y-
axis.

Example: SetYscaleFormat (GetPriceFormat());

Display the indicator’s y-axis in the same format as the MasterChart is
displayed.

Definition: float Highest (series series, int span)

Meaning: Returns the highest value in series for the elements series[0], ...
series[span – 1]

Example: tenBarHigh = Highest (close, 10);

Definition: void Highlight (string type, string color)

 void HighlightRGB (string type, int red, int green, int blue)

 void HighlightAt (string type, string color)

 void HighlightRGBAt (int offset, string type, int red,int green,int blue)

Meaning: Hightlights the current bar with respect to the chosen `type’ in the
specified `color’.

The following types are supported: (See screenshot)

“ellipse”, “upTriangle”, “downTriangle”, “slot”, “bottomLine”, “topLine”, as well as
“textAbove”, “textBelow”.

The text to be displayed with “textAbove” and “textBelow” is appended to the
type separated by a colon, e.g.:
Highlight(“textAbove:This text appears\nabove the period”,

“black”);

A line break can be enforced by using the charater sequence \n. Lines are not

wrapped automatically.

 NanoTrader-Express

 NanoTrader-Express 35

See function “plot” for a listing of the supported color names.

Multiple highlights can be overlaid.

Example:
if (volume > 500) then Highlight(“ellipse”, “green”);

if (volume > 500) and IsBarCompleted() then
 Highlight(“ellipse”, “green”); //no intra bar highlighting

The “At”-versions allow to offset a highlight from the current bar similar to
indexing price data, i.e., use HighlightAt(2, "upTriangle", "blue") to set a
highlight two periods before the current bar. This makes it easy to, say,
highlight price patterns that stretch out over multiple periods.

Definition: IndexOfHighest (series series, int span)

Meaning: Returns the index of the highest value for the elements series[0], ...
series[span – 1]

Example: highDiff = CurrentBarIndex() – IndexOfHighest (close, 10);

Definition: IndexOfLowest (series series, int span)

Meaning: : Returns the index of the lowest value for the elements series[0], ...
series[span – 1]

Example: lowDiff = CurrentBarIndex() – IndexOfLowest (close, 10);

Definition: bool IsBarCompleted()

 NanoTrader-Express

 NanoTrader-Express 36

Meaning: Returns true if the period currently worked on is completed.

Example:
if IsBarCompleted() and (volume > 1000) then
 PlaySound(“gong”);

Definition: bool IsFinalBar()

Meaning: Returns true if currently the final bar is processed.

Example: if IsFinalBar () then MovingAverage (mySeries, mySeries, $span);

Definition: bool IsFirstBar()

Meaning: Returns true if currently the first bar is processed.

Example: if IsFirstBar () then MovingAverage (close, mySeries, $span);

Definition: bool IsIntradayEntry()

This function is only available for Stop sentimentors.

Meaning: Rreturns true in case the position has just been opened in the

current, not yet closed period. Sometimes it is necessary to use a different
scheme for calculating the stop price for the initial period, e.g., based only on
the entry price. In case the position is not closed within this initial period, the
stop price for the next period to come will be calculated again.

Example: if IsIntradayEntry () then SetStopPrice(EntryPrice() – 0.05);

Definition: bool IsNewDay()

Meaning: Returns true in case the the current bar is the first bar of a new day

of if it is the very first bar of the available data.

Example: if IsNewDay () then Highlight(“slot”, “blue”);

Definition: bool IsNonZero(float value)

Meaning: Returns true if `value’ >= 0.001. Never test with „= 0“, because due to
rounding errors this condition is very rarely met.

Example: if IsNonZero (a * b) then val = sum / (a * b);

Definition: bool IsZero(float value)

Meaning: Returns true if `value’ < 0.001. Never test with „= 0“, because due to
rounding errors this condition is very rarely met.

Example: if Not IsZero (a * b) then val = sum / (a * b);

 NanoTrader-Express

 NanoTrader-Express 37

Definition: float Log (float value)

Meaning: Returns the natural logarithm of `value’ or void if `value’ <= 0.

Example: Log (1000) returns 6.9078

Definition: float Lowest (series series, int span)

Meaning: Returns the lowest value in series for the elements series[0], ...
series[span – 1]

Example: tenBarLow = Lowest (close, 10);

Definition: int MarketPosition ()

This function is only available for Stop sentimentors.

Meaning: Returns the direction of the current position:
1 = long
0 = flat
-1 = short

Example: if MarketPosition() = 1 then SetStopPrice (low – 0.01);

Definition: float Max (float value1, float value2)

Meaning: Returns the maximum value of `value1’ and `value2’

Example: Max (3, 7.5) returns 7.5

Definition: float MaxPriceEntryBar ()

This function is only available for Stop sentimentors.

Meaning: For Stops with intraperiod updates (see SetIntraPeriodUpdate()).
Returns the highest price of the opening period of a trade that was achieved
after the position was opened.

Example:
If (MarketPosition() = 1) and IsIntradayEntry() then
 SetStopPrice (MaxPriceEntryBar() - 5 * TickSize();

Definition: float MinPriceEntryBar ()

This function is only available for Stop sentimentors.

Meaning: For Stops with intraperiod updates (see SetIntraPeriodUpdate()).
Returns the lowest price of the opening period of a trade that was achieved
after the position was opened.

 NanoTrader-Express

 NanoTrader-Express 38

Example:
If (MarketPosition() = -1) and IsIntradayEntry() then
 SetStopPrice (MinPriceEntryBar() + 5 * TickSize();

Definition: void MessageBox(string message)

Meaning: Displays `message’ in a popup window.

Please see function PlaySound() for a description of when a message is
displayed. The same principles apply as for playing sounds.

Example:
if (close > high[1]) and (close > high[2]) then
 MessageBox(“New peak at symbol “ + SymbolName());

Definition: float Min (float value1, float value2)

Meaning: : Returns the minimum value of `value1’ and `value2’

Example: Min (3, 7.5) returns 3

Definition: MovingAverage (series source, series target, int span)

Meaning: Computes the $span-bar MovingAverage of `source’ and writes the
result into `target’. This function should only be used in conjunction with
IsFirstBar() or IsFinalBar().

Example:
if IsFirstBar () then MovingAverage (close, mySeries, $span);

if IsFinalBar () then MovingAverage (mySeries, mySeries, $span);

Definition: NormalCDF (float value)

Meaning: Returns the value of the density function of the standard normal
distribution at value `value’.

Example:
cdf = NormalCDF(0.2);

Definition: NormalPDF (float value)

Meaning: Returns the value of the standard normal distribution at value `value’.

Example:
cdf = NormalPDF(0.2);

Definition: time NumericToTime (float value)

Meaning: Converts `value’ into a time value whereby `value’ is interpreted as
HHMM, e.g., 1545 is converted into the time 15:45.

 NanoTrader-Express

 NanoTrader-Express 39

If the hour-part of `value’ is larger than 23 it is set to 23.
If the minute-part ‘ value’ is larger than 59 it is set to 59.

This function is ideal whenever the computation should rely on a time that
needs to be adjustable through the DesignerBar and/or the optimizer.

Example:

 if (time >= NumericToTime($blockStart))
 and (time <= NumericToTime($blockEnd)) then
 sentiment = senti_block;

Definition: string NumericToString (float value, string format)

Meaning: Formats `value’ according to format `format’ and returns the result as
a string.
`Format’ supports all formats as used for the C-function “printf()”. The most
important formats are:

“%f” decimal floating point
”%6.2f” rounds to two decimals
”%g” discards trailing zeroes
”%e” scientific notation

In case format is the empty string the function uses the “%g” format.

For formatting a price, see function PriceToString().

Example:
ShowTip(NumericToString(val, “%6.4f”);

Definition: void PlaySound(string sound)

Meaning: Plays the sound file denoted by `sound’. `sound’ may be a complete
path name to the .wav file to be played or it may be the so-called file title of a
.wav file residing in the subdirectory Wav of the installation directory.
E.g. if that directory contained a file named “ringin.wav” then the call
PlaySound(“ringin”) would refer to that file.

A sound is only played once and only if it occurred by receiving live data.
Note that with every incoming tick the Express program is executed, hence for
the current period the sound will by default be played as soon as the function
PlaySound() is called and will not wait until the end of the period.
If a sound should only be played at the end of a period this can be achieved as
follows:
if IsBarCompleted () and soundCondtion then
 PlaySound(“gong”);

Note that per period only that sound is played that was initiated as the first
sound.

If `sound’ cannot be resolved to a valid wav-file a beep is played.

 NanoTrader-Express

 NanoTrader-Express 40

Example:
if volume > 300 then
 PlaySound(“gong”); //intra bar notification of a high volume period

if IsBarCompleted () and (close > high[1]) then
 PlaySound (“corkpop”); //end of bar notification of a period’s close exceeding
 //the previous period’s high

Definition: void Plot (series curve, string color, int penWidth)

 void Plot (series curve, int red, int green, int blue, int penWidth)

Meaning: Plots the series `curve’ using in the specified color and pen width.

Example: Plot (close, “green”, 2);
 Plot (close, 128, 128, 128, 1); //grey

Definition: void PlotBand (series curve1, string color1, int penWidth1,
 series curve2, string color2, int penWidth2, string fillColor

Meaning: Plots the series `curve1’ and `curve2’ and fills the interior with color
`fillColor’.

Example: PlotBand(upper, “green”, 2, lower, “red”, 2, “lightgreen”);

Definition: void PlotLine (float value, string color, int penWidth)

Meaning: Plots a horizontal line at level `value’ using the specified color and
pen width..

Example: PlotLine ($threshold, “red”, 2);
 PlotLine (100, 150, 0, 0, 1); //dark red

Definition: PlotBars (series open, series close, series high, series low)

Meaning: Plots a bar chart using the specified series.

Example: PlotBars (myOpen, myClose, high, low);

Definition: PlotCandles (series open, series close, series high, series low) Definition: color name, int penWidth PlotBars (float value, float exponent)

Meaning: Plots a candle stick chart using the specified series.

Example: PlotCandles (myOpen, myClose, high, low);

Definition: float PointValue ()

Meaning: Returns the point vlaue of the symbol the express sentimentor is
attached to.

Example: barValue = (high – low) * PointValue();

 NanoTrader-Express

 NanoTrader-Express 41

Definition: float Power (float value, float exponent)

Meaning: Returns `value’ raised to the power `exponent’.

Example: Power (3, 3) returns 27

Definition: float PrevDayHigh/Low/Open/Close/Vol ()

Meaning: Returns the High/Low/Open/Close/Vol of the previous day or void in

case the data is not available

Example: yesterdayMedian = (PrevDayHigh() + PrevDayLow() +
PrevDayClose()) / 3

Definition: string PriceToString (float value)

Meaning: Rounds `value’ to the nearest price with respect to the defined
ticksize and precision of the analyzed symbol and converts it into a string.
Takes fractional notations into account.

Example: ShowTip(“TriggerPrice = “ + PriceToString(high[1] + 2*TickSize()));

Definition: float Round (float value, int precision)

Meaning: Returns `value’ rounded to `precision’ decimals.

Example: Round (2.428, 2) returns 2.43

Definition: float RoundMultiple (float value, float multiple)

Meaning: Returns `value’ rounded to the nearest multiple of `multiple’.

Example: RoundMultiple ((high + low) / 2, TickSize());

Definition: RSI (series source, series target, int span)

Meaning: Computes the $span-bar RSI of `source’ and writes the result into
`target’. This function should only be used in conjunction with IsFirstBar() or
IsFinalBar().

Example:
if IsFirstBar () then RSI (close, mySeries, $span);

if IsFinalBar () then RSI (mySeries, mySeries, $span);

Definition: void SetArraySize (array arr, int size)

Meaning: Sets the size of array `arr’ to `size’, i.e., the elemts can be accessed
using the indices 0 to (size – 1).

Example: if IsFirstbar() then arr.SetSize(arr, $arrSize);

 NanoTrader-Express

 NanoTrader-Express 42

Definition: void SetArrayTo (array arr, float value)

Meaning: Sets all entries of the array `arr’ to `value’.

Example: if IsFirstbar() then SetArrayTo(arr, 500);

Definition: void SetIntraPeriodUpdate ()

Meaning: Valid only for Stop sentimentors. The Stop calculation is set to be
done with each incoming tick. This is specifically useful when programming
tactics.

Stops containing SetIntraPeriodUpdate() are ignored in backtesting.

Note: For internal reasons the existance of the function call in the source code
suffices to activate the intra period computation – even if the corresponding
statement is never executed, i.e., even with code like
If false then SetIntraPeriodUpdate(); the intra period computation is activated.

Definition: void SetLongTrigger (float value)

Meaning: Defines the confirmation price or limit price for a long signal. To
activate the evaluation of this price the Evaluator’s policy for „Sentiment Enter
Signals“ must be set to „Confirmation price next bar“ or “Limit price next bar”. In
case no sentimentor calls this routine the comfirmation price is set to the
High/Low of the period generating the signal. The limit price will be set to the
close of the period generating the signal. In case many sentimentors call this
routine the strictest price is taken.

Example: SetLongTrigger ((high + low) / 2);

Definition: void SetShortTrigger (float value)

Meaning: Analogously to SetLongTrigger().

Example: SetShortTrigger ((high + low) / 2);

Definition: void SetStopPrice (float value)

This function is only available for Stop sentimentors.

Meaning: Defines the stop price for the current period in case the position has
just been entered or for the next period in case the position has been entered
before this period.

Note: In a given sentimentor there cannot be calls to both SetStopPrice() and
SetTargetPrice().

Example: SetStopPrice (low[-1]);

Definition: void SetTargetPrice (float value)

 NanoTrader-Express

 NanoTrader-Express 43

This function is only available for Stop sentimentors.

Meaning: Defines the target price for the current period in case the position has
just been entered or for the next period in case the position has been entered
before this period.

Note: In a given sentimentor there cannot be calls to both SetStopPrice() and
SetTargetPrice().

Example: SetTargetPrice (high[-1]);

Definition: void SetYscaleFormat (string format)

Meaning: Defines the format of the y-axis in printf like format.

Example: SetYscaleFormat(“%.5d”); //use 5 decimal places

SetYscaleFormat(“%g”); //use the compactest display

Definition: void ShowTip (string message)

Meaning: Anchors `message’ to the current bar. The message is displayed in a
popup window when the cursor is above the bar. To indicate a new line use the
character sequence \n.

Example: if CrossesAbove (mySeries, 70) then
 ShowTip („Entered upper zone!\nWait for confirmation.“);

Definition: float Sign (float value)

Meaning: Returns the sign of value.

Example: Sign (-3) return –1; Sign (5) returns 1; Sign (0) returns 0

Definition: float Sine (float value)

Meaning: Returns the sine of `value’ degrees.

Example: Sine (70) returns 0.9397

Definition: float SquareRoot (float value)

Meaning: Returns the square root of value or void if `value’ < 0.

Example: SquareRoot (4) returns 2

Definition: void StdDev (series source, series target, int span)

Meaning: Computes the standard deviation of the values source, source [1], ...,
source[span-1] saves the result in target.
This function should only be used in conjunction with IsFirstBar().

Example: StdDev (close, myseries, 10);

 NanoTrader-Express

 NanoTrader-Express 44

Definition: float Sum (series series, int span)

Meaning: : Returns the sum of the elements series[0], ... series[span – 1].
Returns void in case one or more required elements are void.

Example: amount = Sum (mySeries, $span);

Definition: void Swing (series series, input spanLeft, input spanRight)

Meaning: Standard interpretation scheme where the sentiments are computed
based on swings in series

Example: interpretation Swings (mySeries);

Definition: string SymbolName()

Meaning: Returns the name of the symbol this Express script is working on.

Example:
if (close > high[1]) and (close > high[2]) then
 MessageBox(“New peak at symbol “ + SymbolName());

Definition: float Tangent (float value)

Meaning: Returns the tangent of `value’ degrees.

Example: Tangent (70) returns 2.7475.

Definition: float TickSize ()

Meaning: Returns the ticksize of the symbol the express sentimentor is
attached to.

Example: trigger = high[1] + 3 * TickSize();

Definition: float TickValue ()

Meaning: Returns the tick vlaue of the symbol the express sentimentor is
attached to.

Example: profit = $nbTicks * TickValue();

Definition: string TimeToNumeric (time timeVal)

Note: This routine is deprecated and will be removed in a forthcoming version.
See function Duration() instead.

Meaning: Converts a time value into a numeric.

Example: duration = TimeToNumeric(time) – TimeToNumeric(timeOpen[1]);

 NanoTrader-Express

 NanoTrader-Express 45

Duration now holds the duration in seconds since the start of the previous
period.

Definition: string TimeToString (time timeVal, string format)

Meaning: Format `timeVal’ according to `format’ into a string
Format supports the formatting of the C-function strftime(), i.e.:

%a Abbreviated weekday name

%A Full weekday name

%b Abbreviated month name

%B Full month name

%c Date and time representation appropriate for locale

%d Day of month as decimal number (01 – 31)

%H Hour in 24-hour format (00 – 23)

%I Hour in 12-hour format (01 – 12)

%j Day of year as decimal number (001 – 366)

%m Month as decimal number (01 – 12)

%M Minute as decimal number (00 – 59)

%p Current locale's A.M./P.M. indicator for 12-hour clock

%S Second as decimal number (00 – 59)

%U Week of year as decimal number, with Sunday as first day of week (00 –
53)

%w Weekday as decimal number (0 – 6; Sunday is 0)

%W Week of year as decimal number, with Monday as first day of week (00 –
53)

%x Date representation for current locale

%X Time representation for current locale

%y Year without century, as decimal number (00 – 99)

%Y Year with century, as decimal number

%z, %Z Time-zone name or abbreviation; no characters if time zone is
unknown

%% Percent sign

If `format’ is the empty string the time is formatted to display Date and Time.

Example: ShowTip(TimeToString(time, “%H:%M:%S”));

Definition: TriggerLine (series curve, series trigger)

Meaning Standard interpretation scheme where the sentiments are computed
based on the crossings of `curve’ and `series’.

Example: interpretation TriggerLine (close, mySeries);

Definition: void TwoThresholds (series series, input upThreshold, input
downTrheshold)

 NanoTrader-Express

 NanoTrader-Express 46

Meaning: Standard interpretation scheme where the sentiments are computed
based on zones defined by two thresholds.

Example: interpretation TwoThresholds (mySeries, $upperZone, $lowerZone);

Definition: void Unaggregate (series source, series target)

Meaning: If the series `source’ was imported from another sentimentor which
potentially was aggregated then use Unaggregate() to map it back to the
MasterChart aggregation.

Example:

series maAgg(MovingAverage.main); //the MovingAverage sentimentor is
 //aggregated in the study
series ma;

...

if IsFirstBar() then
 Unaggregate (maAgg, ma);

